brunch

You can make anything
by writing

C.S.Lewis

by 건축학도 Nov 05. 2017

AD Fraud(부정 광고)와의 트래픽 전쟁

Viewability에 이은 AD Fraud 논쟁

최근 디지털 광고 업계에서 주목받고 있는 키워드 중 하나는 'Viewability(가시성)'입니다. 실제로 광고를 보는 유의미한 유저들에게만 광고비를 지불하겠다는 광고주 니즈 역시 점점 증가하고 있습니다. 하지만 동시에 'AD Fraud'와 'AD Blocking'이라는 방해 요소(?) 개념이 등장하면서 상황은 다소 복잡해졌습니다. 이미 앞 시간에 'AD Blocking'에 대해 전반적으로 소개해드렸습니다만 간단히 말하자면 이는 유저들을 위해 불필요한 광고를 없애주는 필터링 시스템입니다. 물론 광고에 방해받는 걸 싫어하는 유저들이야 좋겠지만 광고주와 매체사 입장에서는 매출 하락 등의 이유로 다소 난감한 상황이라고 볼 수 있습니다. 때문에 광고 퀄리티는 물론이거니와 세밀한 유저 타깃팅이 보다 중요하게 되었습니다. 유저가 자발적으로 선택하는 'AD Blocking'과는 다르게 'AD Fraud'는 그 어느 누구를 위한 것이 아닌 하나의 광고 범죄 행위로써 이는 글로벌에서 크게 이슈가 되었습니다. 자신들의 광고를 타깃 유저들에게 노출하고 싶어 하는 광고주에게 잠재적 위협 요소가 등장한 거죠.


이렇게 위에서 말한 'Viewability', 'Ad Blocking', 'Ad fraud'는 광고 업계에서 매번 언급되는 주요 이슈들로 글로벌 각 시장에서는 이러한 문제들을 적극 대응하고 있습니다. 반면 국내에서는 상대적으로 심각하게 이슈화 되진 않은 듯 보이지만, 이미 이를 주제로 한 다양한 글로벌 포럼들을 확인할 수 있었습니다.


<그림1. AD Fraud(부정 광고 or 광고 사기)는 광고 생태계를 위협하고 있다.>

이번 시간에는 AD Fraud는 무엇이고, 어째서 전 세계 광고 시장에서 큰 이슈가 되고 있는지 그리고 그에 대한 해결책 등을 전반적으로 살펴보고자 합니다. 


우선 시작하기 앞서 아래는 2017년 8월 27일 업계 기사입니다.

" 25일(현지시간) 월스트리트 저널(WSJ)에 따르면 구글의 모회사인 알파벳은 약 수백 개에 달하는 광고회사에 보낸 서한에서 인터넷 광고업계의 ‘광고 사기’(ad fraud) 문제를 언급하며 환불 조치를 내렸다고 밝혔다. 구글의 상품 관리 책임자인 스콧 스펜서는 “피해를 입은 광고주들에게 환불을 제공했다”라고 밝혔으나 정확한 환불 액수에 대해서는 언급하지 않았다. (중략) WSJ는 “인터넷 광고업계는 올해 사기로 인해 65억 달러(약 7조 3000억 원)의 광고비를 헛되게 쓸 것으로 추산된다”라고 전했다. 그러나 이는 지난해에 비해 약 10% 줄어든 액수다. 인터넷 업계 관계자들은 “사기로 광고주들을 현혹하는 프로그래머들을 잡아내기는 결코 쉽지 않다”며 “사기 행각이 노출되면 이들은 이미 행적을 감춘 상태”라고 설명했다.
(기사 원문: http://www.fnnews.com/news/201708271530488627)


이처럼 AD Fraud의 피해 액수는 어마어마합니다. 

또한, 관련 기사를 찾던 중 ComScore의 'Duncan Trigg' 상무가 지난 2016년 8월에 기고한 글에서 한 문장이 유독 눈에 띄었습니다. (Bold체여서 그랬나 봅니다...)


"On the heels of this great debate around viewability, we now turn our attention to yet another ecosystem challenge that threatens ad quality: fraud"

Viewability 논쟁에 이은 AD Fraud 논쟁이죠. 그만큼 업계에선 화두가 되었다는 뜻입니다. 이어서 이런 얘기를 합니다.


"Nowadays, there are bad actors in the ecosystem that work exclusively to generate low quality traffic, pretending to be humans, in order to sell their impressions with high CPMs to unprepared advertisers. These tactics also directly impact publishers who have an authentic audience, often devaluing valid, authenticate impressions from premium sites.
It is not uncommon for these fraudulent impressions to surface on ad exchanges, posing as audiences with different segments and interests, waiting for someone to buy them or even pay a CPM for them. Often times these fraudulent impressions appear on low-quality sites, mainly designed to accomplish this purpose. Other times, they pose as impressions on premium sites through sophisticated types of fraud, such as domain laundering."

실제 유저가 아닌 Bad actors들이 저품질의 트래픽을 뽑아내고 이로 인한 높은 노출량의 비싼 CPM의 지면을 광고주들에게 판다면 어떨까요? 이는 광고주뿐만 아니라 진성유저를 확보하고 있는 프리미엄 매체사들에게도 큰 손해겠죠. 여기서 지칭하는 'Bad actors'가 바로 'Ad Fraud'입니다. 대충 감이 오셨겠지만 'Ad Fraud'는 프로그래매틱 바잉(Programmatic Buying)이 주로 이루어지고 있는 해외(특히 미국) 광고 생태계를 망치고 있는 주범입니다. 마지막으로 기사 서두 내용입니다.


"Several years ago we, as an industry, asked ourselves: should a non-viewable impression be considered a valid one? After countless industry discussions, analyses, and studies, we concluded the answer to this question is an unequivocal “no.” After all, if an ad is not seen, then it can’t possibly do its job of having an impact on the consumer."

몇 년 전 non-viewable 노출량을 유의미한 값으로 봐야 하는가를 계속 논해왔고 수많은 조사와 분석 끝에 "무의미하다."라고 스스로 답을 내렸다 합니다. 본질적으로 광고가 유저에게 노출될지언정 제대로 보이지 않는다면 아무런 영향을 끼칠 수 없다는 거죠. 당연한 얘기입니다. 그래서 업계에서는 'Viewability'를 높이는 전략을 계속 찾아왔습니다.


지난 2016년 11월 IAS(Integral Ad Science)에서 "Ad fraud deep dive- what is the true impact of digital ad fraud"를 주제로 한 세미나 영상 먼저 보겠습니다. (A-Z 일목요연하게 정리를 잘 해주었습니다.)


<영상1. Ad fraud deep dive- what is the true impact of digital ad fraud>

AD Fraud는 넓게는 해킹의 한 종류입니다. 이는 사람이 아닌 봇(Bot)을 통해 부정 트래픽과 노출량, 클릭, 설치 등을 유발하여 광고 효율을 떨어뜨리는 것을 말합니다. 말 그대로 광고 사기죠. 그럼 AD Fraud가 왜 나타났는지를 보겠습니다.


<그림2. The Business of Hacking> 출처: Ad fraud deep dive- what is the true impact of digital ad fraud

위의 차트를 보시면 다른 해킹에 비해서 AD Fruad는 낮은 리스크로 높은 수익을 낼 수 있습니다. 해킹은 치명적인 범죄행위지만 그중 AD Fraud는 상대적으로 명확한 페널티가 없고 이를 입증하기까지 절차도 복잡하다 보니 처벌하기에 어려움이 따릅니다. 때문에 해커들은 이 쪽에 많이 몰리게 되고 지속적으로 범죄는 진화하고 있는 거죠. 하필 CTR과 페이지 방문수 혹은 페이지 체류시간을 KPI로 하는 광고주들에겐 정말 치명적입니다. 사람이 아닌 봇에 의해 생겨난 트래픽이 있고 무의미한 광고비를 지출하고 있다 보니 이젠 "이를 어떻게 걸러야 하는가" 역시 중요한 전략 포인트가 되었습니다.

Ad Fraud로 인해 발생하는 무효 트래픽을 IVT(invalid traffic) 혹은 NHT(non-human traffic)로 표현합니다. 그리고 Media Rating Council(MRC)에서는 IVT를 Sophisticated and General 두 가지 타입으로 나누었습니다. 요약하면 General IVT는 쉽게 걸러질 수 있는 타입인 반면 Sophisicated IVT는 디바이스 하이재킹(Hijacking), 말웨어(Malware) 등으로부터 발생하는 보다 진화된 타입입니다. 더욱 걸러내기 까다로운 형태지요. 때문에 아래 차트를 보시듯 이미 후자의 형태 비중은 지속적으로 늘어나고 있습니다.


<그림3. General IVT and Sophisticated IVT 비중>


<그림4. 광고 형태에 따른 IVT 비중(위)과 Viewability 수치(아래)>

또한 일반 DA 광고에 비해 동영상 형태가 더 높은 CPM 단가로 형성되어 있다 보니 동영상 인벤토리에서 IVT의 비율이 높은 것으로 보입니다. 단가가 높은 곳에 해커들이 모일 수밖에 없는 거겠죠. 또한 직거래보다 프로그래매틱 바잉의 IVT가 4배 더 높습니다. 이는 RTB 알고리즘 아래 자동으로 시스템에서 움직이다 보니 필터링하기에 어려움이 있습니다. 때문에 Viewability 수치 역시 프로그래매틱 바잉보다 투명성이 높은 직거래 방식이 좀 더 높다는 결과가 나옵니다.


<그림5. A result of focusing on the wrong factors?>

위에서 보셨듯 프로그래매틱 광고 운영 시 Ad fraud로 인한 가짜 퍼포먼스에 집중하다 보면 해커들에 의해서 새로운 값싼 광고 인벤토리들은 지속적으로 공급됩니다. 물론 해당 광고는 봇들에게 노출되겠지요. 이런 무의미한 값은 높은 (가짜) 퍼포먼스 결과 리포트에 반영됩니다. 당연 높은 노출량과 클릭이 나오니 결국 질보다 양에 집중하게 됩니다. 때문에 광고 인벤토리 증가를 요구하게 되고 이는 다시 해커들에 의해 인벤토리가 나오게 되는 식의 반복 루프가 형성됩니다. 봇은 주로 보안시스템을 뚫고 나온 컴퓨터에서 생깁니다. 물론 유저들이 모르는 사이에 감염된 컴퓨터는 자동으로 액션을 이행하게 됩니다.


<그림6. How does fraudulent traffic occur?>

봇이 어떻게 액션을 이행하는지를 좀 더 살펴보겠습니다. 우선 봇으로부터 IVT가 발생하는 순서는 아래와 같습니다.


해커가 특수 코드를 활용해서 봇넷 센터에 컨트롤 가능한 봇을 여럿 만든다. 

일반 유저는 알게 모르게 봇 엔진을 다운로드 혹은 인스톨을 한다.

봇은 프리미엄 사이트(높은 진성 트래픽을 소유하고 있는)와 리타켓팅 쿠키를 얻기 위해 이커머스 사이트를 방문하고 이후 가짜 사이트에 방문한다.

그렇게 수많은 트래픽을 얻게 된 가짜 사이트는 광고주에게 매력적으로 보이게 되고 프로그래매틱 시장에 투입된다.

해당 광고는 계속 봇에게 노출되고 그렇게 봇넷 운영자는 수익을 얻게 된다.


봇넷은 주로 리타케팅 쿠키를 얻기 위해 이커머스 사이트에 방문하고 월스트리트 저널이나 The Economists 같은 프리미엄 뉴스 사이트에서 바잉파워가 있는 고수익자 데모(Demo) 타깃을 확보한다고 합니다. 그 후 가짜 사이트에 방문하고 CPM이나 CPC로 수익을 얻는 구조입니다. 심지어 프리퀀시 캡을 인지하고 다 쓴 쿠키는 지우고 다시 이커머스로 들어가 위의 서클을 반복합니다. 이미 시장에 투입된 가짜 사이트는 이처럼 모두에게 피해를 끼칩니다. 특히 실시간으로 이뤄지는 비딩 네트워크에서는 심각한 문제입니다. 가능한 이를 판별하기 위해서 다양한 툴이 제공되고 있지만 그 이상으로 봇의 능력은 점점 진화하고 있습니다. 예를 들어 어떤 봇은 일반 유저의 행동 패턴과 심지어 마우스 스크롤까지 카피하는 등 새로운 액션을 생성하고 광고도 클릭합니다.


<그림7. 봇과 사람의 마우스 움직임 비교>
<그림8. Sophisicated Bot 'Avireen'의 머신 움직임 예시> 리니어 하게 자동으로 마우스가 움직이고 종종 클릭도 한다.

진화한 봇 중에 하나인 'Avireen'은 유저 행동을 러닝 하는 머신입니다. 처음 영상을 보시면 아시겠지만 봇 마우스는 랜덤 하게 화면을 클릭하고 심지어 스크롤도 하면서 이런 움직임을 익스플로러(IE) 혹은 크롬에 데이터를 보냅니다. 이걸 어떻게 트래킹 할지 참 의문이긴 합니다. 심지어 봇이 활동하는 OS 중에서는 DIY 크롬 등 레플리카 브라우저를 만들어서 활동하는데 이걸 디텍트 해야 한다고 합니다. (ex: 페이크 크롬) 물론 모바일에서도 마찬가지입니다.


이 외에 대표적인 AD Fraud 타입은 아래와 같습니다.


애드 스태킹(Ad Stacking): 같은 게재 지면에 여러 개의 광고를 겹쳐서 보내는 형식, 하나의 광고 뒤에 여러 개의 광고가 있다보니 한번의 클릭으로 다른 광고들에도 클릭이 적용 됨.

픽셀 스터핑(Pixel Stuffing): 특정 사이트를 열면 눈에 안보이는 작은 픽셀 영역에 광고가 노출 됨. 이 역시 노출과 클릭에 반영. 

지역 위조(Location Fraud): 모바일에서 주로 일어나며 경도 위도를 조작해서 위치 타깃팅을 망치는 형태. 비싼 트래픽을 사고 오히려 값싼 트래픽의 타 지역으로 광고가 집행되어 손해를 봄.

도메인 스푸핑(Domain Spoofing): 프리미엄 도메인 이름을 도용하여 다른 URL을 제공하는 형태. 겉으로는 정상적인 곳에 노출되는 것으로 보이지만 사실 무관한 다른 도메인이다.

클릭 스터핑(Click Stuffing): 모바일 상에서 원하는 광고를 클릭하면 동시에 다른 앱에도 클릭을 유발시켜 전환값을 가로채는 방식. PC에서 쿠키 스터핑(Cookie Stuffing)과 비슷한 방식.


<그림9. Detecting & preventing ad fraud: 3 pillars>AD Fraud를 막아낼 대표적인 3가지 방법

계속 진화하는 AD Fraud를 완벽하게 막아낼 방법은 아직 없는 듯합니다. 그나마 있는 대표적인 방법은 아래와 같습니다.


실제 사람과 봇의 행동 패턴을 분석하여 이를 구분. IVT 차단에 반영.

브라우저 버전, 아이폰 혹은 윈도우10 PC 같은 기기별로 실제 유저에게 보인 광고 구분

지속적인 해커 커뮤니티 모니터링과 말웨어 분석


다소 추상적으로 보입니다만 결국 실제로 활동하는 유저 데이터를 분석하여 유효 트래픽을 구분하고 Third party 툴을 활용하여 다양한 IP 혹은 디바이스 패턴 분석 후 무의미한 유저는 광고 노출에서 차단시키는 방법이 있습니다. 봇이 사람과 유사한 패턴으로 액션 하기에 점점 구분은 어려워지겠지만 실제로 액션(구매이력, 다운로드 후 실행 등)을 보인 오디언스 데이터를 모아서 정확하게 식별된 타깃에게만 노출시키는 것도 방법이라고 합니다. 예를 들어 실제 유저와는 다르게 봇이 앱을 설치하면 보통 이후에 추가 행동이 없거나 현저히 낮으니 이들을 걸러내면 되겠지요. 이 밖에도 관련 업체들로부터 제공되는 다양한 툴과 예방법이 있을 겁니다. 


지금까지 AD Fraud에 대해 전반적으로 살펴보았습니다. 디테일한 내용은 저 역시 공부를 해야겠지만, 글을 쓰면서 느꼈던 건 해외에서는 이미 AD Fraud의 심각성을 인지하고 각 에이전시에서 발 빠르게 대처 방안을 마련하고 있었다는 겁니다. 보다 프로그래매틱 바잉이 활발하게 움직이는 시장이다 보니 그럴 수도 있겠다 싶었습니다만 국내 역시 안전지대는 아닌걸 느꼈습니다. 특히 향후 디지털 광고 방향은 프로그래매틱 바잉이라고 업계에서 강조하는 만큼 동시에 AD Fraud를 인지하고 어떻게 대처해야 할지 역시 다각도로 논의 될 필요성이 있다고 봅니다.



http://www.thedrum.com/industryinsights/2016/08/24/ad-fraud-digital-s-newest-bad-guy-0

ComScore

미디어장관리

mediarchi.com



매거진의 이전글 아웃스트림(Outstream) 동영상 광고 특성
브런치는 최신 브라우저에 최적화 되어있습니다. IE chrome safari