brunch

You can make anything
by writing

C.S.Lewis

by 무명 May 07. 2020

[사내정보방열기] #7 ML, AWS, DATA

https://aws.amazon.com/ko/blogs/machine-learning/enhanced-text-classification-and-word-vectors-using-amazon-sagemaker-blazingtext/?nc1=h_ls


https://www.slideshare.net/nakjookwon5/aws-data-lake?next_slideshow=1


https://www.slideshare.net/nakjookwon5/aws-digital


https://tfhub.dev/google/collections/bert/1

bert 모델들


https://tfhub.dev/s?q=text%20embedding

text embedding 모델들


https://github.com/keithrozario/Klayers/blob/master/deployments/python3.7/arns/us-west-1.csv

aws arns us-west-1 모음 

lambda layers 에서 해당 arn 입력해서 패키지 추가하면 편함. 


https://aws.amazon.com/ko/blogs/korea/build-a-serverless-frontend-for-an-amazon-sagemaker-endpoint/

sagemaker로 서버리스 엔드포인트 만들기 


http://labs.brandi.co.kr/2019/10/04/dev1team.html

aws personalize 를 이용해 개인화 상품추천 구현 



http://labs.brandi.co.kr/2020/01/28/kimwk.html

http://labs.brandi.co.kr/2020/01/28/kimwk.html



https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-segmentation.html

sagemaker를 이용해 semantic segmantation 구현


https://www.slideshare.net/awskr/amazoncom-129165538

aws  personalize 대략적인 설명이 잘 되어있음. 


https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

aws lambda 각종 제한들 

매거진의 이전글 [사내정보방열기] #6
브런치는 최신 브라우저에 최적화 되어있습니다. IE chrome safari