brunch

You can make anything
by writing

C.S.Lewis

by 이남주 NJ Namju Lee Dec 01. 2019

파라메트릭 디자인에 대한 질문

파라메트릭과 미적분의 연관성에 대해 구체적으로 알려주실 수 있나요?

다음과 같은 질문에 대한 개인적인 생각을 공유하려고 합니다.

“파라메트릭과 미적분의 연관성에 대해 구체적으로 알려주실 수 있나요??”


결론부터 공유하면, 미적분을 바퀴로 비유하면, 그 바퀴가 비행기에, 자동차에, 혹은 손수레의 바퀴로 사용될 수 있겠죠. 그렇다면, 파라메트릭은 그 바퀴를 조정하는 방식에 대한 이야기일 수 있습니다. 가령 손수레의 손잡이를 좌우로 중심을 튼다던가. 자동차의 핸들을 돌린다던 가의 방법론일 수 있다는 것이죠. 두 개의 개념이 좀 다르죠, 미적분의 경우는 수의 성질을 이용한 알고리즘일 수 있고, 파라메트릭은 알고리즘을 작동시키는 개념으로 볼 수 있죠.


이렇게 한번 생각을 해보죠, 적분이던 미분이던, 수체계로 무언가를 계산하는 것이죠. 미적분의 문제 뿐 아니라, 우리는 다양한 수학공식으로 수 체계를 기술할 수 있고, 결론적으로 “계산”을 할 수 있는 것이죠. 쉽게 말하면 컴퓨터는 그냥 계산기이기 때문에, 우리가 공식을 입력하거나, 특정 알고리듬을 구현해서 계산을 시킬 수 있는 것이죠.    

 

이제는, 파라메트릭관점에서, 대수학에 대해서 생각해보죠, 위키백과에 따르면, 


“대수학은 대수(代數, 수를 대신함)라는 명칭 그대로, 수를 대신해서 문자를 사용하는 방법으로, 방정식을 푸는 방법을 연구하는 학문에서 시작되었다.”


즉 알 수 없는 미지의 수나 혹은, 변경 가능한 변수들을 문자로 대입해서, 나중에 그 수를 바꿈으로써 그에 맞는 결과물들을 볼 수 있는 것이죠.


쉽게 말하면, 은행에서 이자를 계산하는 알고리듬이 있다면, 너와 나의 계좌번호를 변수로 입력하면 자동으로 각각의 이자를 계산해 줄 수 있다는 거죠. 사람이 100명이 있다면 100개의 다른 계좌번호와 잔금이 입력된 공식을 만들 필요가 없겠죠? 그냥 공식 하나를 가지고, 변수들을 대입해서 결과물을 얻어내는 방식이죠.


질문의 답을 위해, 파라메트릭 디자인을 앞의 방식으로 생각해본다면, 내가 디자인을 할 때, 미분 적분이 중요한 알고리듬 혹은 파라미터라고 간주해 보죠. 그리고 그 결과 값이 디자인의 어떤 결과에 영향을 준다고 생각해보죠. 가령, 비행기가 착륙을 할 때 속도와 시간 거리 등등을 계산하는 미적분 결과 값이 있고, 그 값이 비행기 활주로의 길이를 결정할 수 있는 것이죠. 그렇다면, 바람이 특정 방향으로 특정 힘으로 불어올 때? 특정 고도에서 공기의 저항이 바뀔 때? 비와 눈이 활주로를 덮고 있고 마찰력이 달라질 때? 경비행기 혹은 승객을 500명 이상 태울 수 있는 여객기의 경우?


과연 제동거리를 고려한 활주로의 길이는? 얼마나 더 길어지거나 짧아지는지 등을 계산할 수 있겠죠? 만약 비행기가 순차적으로 연속적으로 착륙을 할 때 충돌하지 않고, 착륙 후 각자의 차고지까지 이동할 수 있는지에 대한 교통정리도 할 수 있겠죠. 어떤 조건에서 어떤 타입의 비행기들을 어떤 활주로로 유도해야 하는지 등등의 다양한 설루션들을 만들어 낼 수 있겠죠. 미적분의 특성상, 토목이나 구조 등의 디자인에 파라미터로 사용될 수 있고, 사람들의 이동이나 도시의 교통흐름을 파라미터로 한 디자인도 가능할 수 있겠네요.


쉽게 요약하면, 컴퓨터는 계산기이고, 디자인 알고리듬(미적분)의 계산의 효율적으로 적용하기 위해 특정 값을 변수(파라미터)로 정해서 그 변수를 바꾸어가면서, 디자인 결과물을 만들어 갈 수 있다.


비디오버젼



브런치는 최신 브라우저에 최적화 되어있습니다. IE chrome safari