brunch

You can make anything
by writing

C.S.Lewis

by 피터의 유희 Mar 21. 2024

유리알 유희에 관한 삼승의 기록 1

끝없이 갈라지는 샛길에 관한 유희의 기록


승택이 <유리알 유희>를 알게 된 것은 이십 여년 전쯤 이었다. 그것은 승택이 선배의 작업실을 찾았을 때였다. 선배는 승택이 힘들 때 조언을 찾아 갈 수 있는 몇 안되는 그런 어른이었다. 선배는 자신의 예전 작업인 우리말 '나'와 '너'를 합쳐 만든 글자를 보여주었다. 소리글자인 '나'와 '너'가 만나 만들어진 그 글자는 눈으로 읽어 의미를 알 수 있었지만, 소리 내어 읽을 수는 없는 새로운 상형어[1]였다. 선배는 자신의 글이 담긴 작은 책을 건네며 <유리알유희>를 읽어보라 권했다. 선배와의 대화는 깊었고 그 대화의 심연 속에 유.리.알.유.희.는 서서히 그러고 깊게 가라 앉았다. 그렇게 이십여년이 지나갔다.


승택은 매일 아침 나갈 준비를 마치고 나면 메신저를 확인한다. 승택은 승준과 매일 아침 메신저에서 만났다. 승준의 메시지가 없으면 페북을 열어 포스팅을 확인한다. 메시지가 없다면, 승준은 무엇인가를 포스팅 했을 것이다. 물론 그것은 대부분이 그렇다는 것이지, 절대적인 것은 아니다. 승택과 승준은 사람이니까. 


때론 승택이 가벼운 말로 첫 메시지를 보낼 때도 있지만, 대부분 새벽 혹은 그 전날 밤 승준이 탐구 중에 남기고 간 말들에서 이야기를 시작하곤 했다. 전날의 포스팅을 소재로 이야기가 시작된다. 그것은 동등한 대화라고 하기 보다는 승준이 이끌고 화두를 던지면 승택은 그것을 따라가는 모습이었다. 승택은 늘 승준의 탐구의 깊이와 넓이에 놀라며 조금이라도 그것을 따라가고자 대화라는 형식에 기꺼이 참여했다. 


그 만남은 깊고 거대한 물결에 휩쓸린 몸을 그 물결의 수원(水原)으로 조금씩 나아가기 위한 한팔 한팔 내 젓는 손짓, 유희의 허우적 거림이었다. 승택은 그 거친 물살안에서 두려움 보다 더 큰 충만을 느꼈기 때문이다. 가끔은 수면 아래로 승택의 머리가 잠기기도 한다. 외부와 차단된 물안에서 승택은 자신의 숨을 참은 심장 소리와 물이 공명하며 울리는 에코와 같은 소리에 둘러 쌓인다. 승택이 그 수면 아래에서 춤을 참고 있을 수 있는 시간은 짧고, 다시 고개를 내밀어 보고 듣기를 시도한다. 


승택과 승준의 대화가 잠시 숨을 고를라 치면 문득 문득 승범이 새로운 바람 같은 대화에 들고 나왔다. 승택이 승준의 물결에 잠겨 있는 모습이라면 승범은 물에 발만 잠길 듯 담그고 물결 위를 총총 걸으며 승준과 승택의 대화 사이의 빈 곳에 작은 조약돌을 하나씩 떨구며 걷고 있었다. 떨구어진 조약돌은 거센 물살위에 선명하고 작은 이야기의 물결을 만들었다. 그 물결이 머무는 동안 승범, 승준, 승택의 대화는 다른 모습으로 흥미로 왔다.  


헤세의 유리알 유희가 대화에 들어 온 그날도 그러하였다. 승준의 생각의 흐름을 따라가려던 승택의 람다 대수가 무엇인지에 대한 질문이 시작이었다. 람다 대수가 무엇인지는 여기서 중요하지 않으니 넘어가도록 하자. 


승범이 말했다. "그리고 재밌게도, 람다대수에서 참과 거짓부터 쌓아 올리며 숫자를 만들고 연산까지 만들어내는 과정은, 보통 수학과(?)에서 1 + 1 = 2 가 되는것을 수학적으로 증명해내는 과정과 같아 보입니다. 전 예전에는 그냥 1 + 1 = 2를 증명한다는게 무슨 괴변인가 싶고, 우스개 소리인줄 알았거든요. 그게 아니더군요."


승범의 설명은 승택의 흥미를 끌었다. 하지만, 승택은 수학에서 1+1=2의 증명이 무엇인지 알지 못했다. 그 흥미는 알지 못하는 것 때문이기도 했을 것이다. "페이노 정리가 + 1 이어 나가는 거죠." 승준이 말했다. 승범이 다시 말한다. "그런데, 요즘 수학과에서 1 + 1 = 2를 정말 증명하는지는 모르겠네요."


1 + 1 = 2 라는 것을 증명하다니?! 들어는 봤지만 승택은 이해 할 역량이 없는 그 질문이었다. 하지만, 승택은 그것이 무엇인가 매혹적이라는 생각이 들었다. 당연한 것이 당연한 것이 아니라는 것이. 증명을 도대체 어떻게 할 수 있지? 얼마전 승준님이 천착하고 (맞는 표현인가?) 있는 ⇄ 심벌과 관련된 것일까? 승택의 머릿속에는 생각이 꼬리에 꼬리를 물고 있었다. 승택의 질문에 대한 승범의 설명으로 시작된 대화는 승범과 승준의 대화로 이어가고 있었다.


"함수의 껍질을 한번 쌓으면 + 1. 몰라도 별로 상관없긴 합니다." 다시 승준이 말했다. 함수의 껍질 한 겹이 1... 이라는 의미겠지? 승택은 생각했다. 함수의 껍질이라니? 함수는 뭐지? 함수는 프로그램의 Function이 아닌가? 승택은 검색을 했다.

"수학에서 함수(函數, 영어: function) 또는 사상(寫像, 영어: map, mapping)은 어떤 집합의 각 원소를 다른 어떤 집합의 유일한 원소에 대응시키는 이항 관계이다. 대략적으로, 한 변수의 값에 따라 다른 한 변수의 값이 정해질 때, 후자는 전자의 함수가 된다."

영어 Function이 맞다고 생각을 하던 승택의 눈에 한 단어가 들어왔다. Mapping. 함수에 Mapping이라는 의미가 있구나. 대응이니 매핑이 맞구나 하고 승택은 생각했다. 아직 정리되지 않은 미묘한 샛길의 발견에 승택의 마음은 살짝 동요되었다. 그때 다시 승범이 조약돌을 떨구었다. "약간 뭐라고 할까요. 비트겐슈타인이 논리철학 논고에서 쌓아올리는 방식의 수학버전 같은거죠.  아 그 반대로 수학의 이런 접근의 철학버전이 논리철학 논고일 수 있겠군요."

A라는 방법의 결과 일수도 있고, 이러한 접근 방법이 A일수도 있다? 그러니까, 결과 일수도 있고 원인일 수도 있다는 것인가? 승택은 흥미로움을 느꼈다. 그리고 언급된 비트겐슈타인을 알아야 하고 그의 논리철학 논고가 무엇인지 알아야겠다는 생각이 들었다. 이미 익숙하지만, 알지 못하는 것이었다. 하지만, 승택은 지금은 승범이 한 말들을 통해 의미를 유추하는 것이 지금은 충분하다고 생각했다.


"유리알 유희 일수도" 승준이 말했다.


"유리알 유희... 못 읽어 봤습니다."라는 승범의 대답에 승준이 말했다. "저도 읽다가 말았습니다. 하지만... 이제 클로드와 함께라면? 일단 원문인 독어로 읽을 수 있겠죠?". 누군가가 유리알 유희를 읽자고 한 것은 아니었지만, 화두처럼 던진 '유리알 유희 일수도'라는 말이 승범, 승준, 승택을 유리알 유희로 이끌 줄을 그 때 셋은 모르고 있었다.


승준이 처음 선택한 책에서 번역, 축역에 관한 열띤 토론이 일고 모두가 민음사 것을 읽기로 한 이야기는 흥미롭지만 설명을 줄이고자 한다. 이 대화로 시작된 유리알 유희 밖의 화두는 삼승이 유리알 유희를 읽는 과정 중에 영어본과 독일어 원본을 비교하며 반복적으로 찾게 만들었다. 어쩌면 번역에서 시작한 화두 조차 유리알 유희가 담고 있는 것인지도 모른다. 승택은 이것이 대화 중에 들었던 번역은 작가의 의도를 옮긴 것이 아닌 번역가의 이해를 옮긴 것이라는 생각 때문이라는 생각을 했다. 


"유리알 유희의 서문을 일을 때 왠지 도움이 될 만한 영상입니다." 승범이 공유한 영상은 바하의 Toccata in D minor를 거대한 파이프 오르간으로 연주하는 영상이었다. 글을 읽으며 음악을 듣는 것은 익숙했지만, 책의 음악을 듣는 것은 승택에게는 생각 못했던 일이었다. "파이프오르간이 제가 생각한 것 보다 뭐랄까 더 메카닉적입니다. 뭔가 거대 로봇을 조종하는 느낌입니다. 예전에 어느 자급자족하는 지방 천주교 성당에서 거대한 파이프 오르간 소리를 잠깐 들은 적이 있는데, 영상에서는 전달이 되지 않는, 영혼을 들었다 놓는 듯한 울림이 멋졌습니다." 승범의 파이프 오르간에 관한 감상에 승준이 물었다. "앨런 케이의 파이프 오르간 연주를 심상에 두고 있으셨을까요?"


다시 승범이 답했다. "앨런 케이가 파이프 오르간을 좋아하게 된 계기도 일종의 이런 낭만의 시대에 대한 로망 같은 것 아닐까요? 뭔가 음악/수학/기계장치의 결합된 형태처럼 보입니다. 파이프 오르간이. 그리고 피아노처럼 손 중심이 아니라, 손과 발이 모두 건반, 페달을 다뤄야하는 것도 재미있습니다." 승범은 계속 말을 이어 갔다. "유리알 유희 서문에서 <잡문의 시대>라고 번역한 "The Age of Feuilleton"도 그 시대적 배경이 재밌네요." 그리고 위키피디아의 포이통 설명을 공유했다. 


파이프 오르간 영상들처럼 유리알 유희와 대화에서 갈라진 샛길 위에서 만든 것들이 메신저 기록을 가득히 채우고 있었다. 그것은 유리알 유희의 끝없이 갈라지는 샛길이었다. 승범, 승준, 승택. 여기 삼승이 유리알 유희 읽는 것은 끊임 없이 갈라지는 샛길 위에서 책 주변을 맴도는 샛길과 샛길들로 연결되어 그 안과 밖을 들고 나는 유희의 연속이었다. 책의 경계를 알 수 없었고, 승택은 어쩌면 그들의 이러한 모습이 헤세의 유리알 유희 속의 유리알 유희 자체가 아닐까 하는 생각이 들었다.  


"일단 저는 1권 25%까지 다시 읽어둘께요. 어제 밀리의 서재 버전으로 거기까지 읽었어서요. 그런데 굳이 서로의 진도를 기다리지 않고 내키는대로 해도 되지만, 논의할 것이 있다면 3명 중 가장 낮은 %의 범위까지 하면 되려나요?". 1권의 25%. 삼승은 모두 이북을 읽고 있었다. 같은 책이지만, 이북은 기기에 따라 선택한 글씨 크기, 줄높이 등에 따라 각기 다른 페이지 숫자를 표시하고 있었다. 지극히 디지털적이며 정확하지 않은 아날로그의 감성이었다. 삼승은 각자의 페이지 번호로 표시된 자신의 유리알 유희를 읽고 있었고, 서로의 위치를 알려주는 새로운 단위가 필요했다. 


"유리알 유희 진행상황 : (리디 1권) 245/1318 입니다."
"저는 현재 65/351 부분입니다. 승범님이 18.6 % 제가 18.5 % 정도네요."
"오늘 한 1권 40~50%까지는 읽게 될 수도 있을 것 같습니다."
"1권 72% 정도까지 읽었습니다. "
"현재 리디 1권 393/1318 지점을 지납니다."
"30% 지점이네요."


숫자, 프로그레스의 공유는 시계의 타이머 처럼 미묘하고 구체적인 긴장감을 만들었다. 그러나, 승준이 일주일 만에 유리알 유희 1,2권을 모두 읽었고, 곧 비슷한 속도의 승택과 승범 사이에 거리가 생기며 승택에게 긴장감의 균형이 넘어지는 것 같았다. 승택은 빨리 책을 읽어야겠다는 부담을 느꼈다. 그러나, 아이러니하게도 그 부담 또한 승택에게 유희로 느껴졌다.


책을 빨리 읽고 함께 대화에 끼고 싶어 마음이 조급해진 승택이었지만, 책 밖으로 이어지는 승범, 승준의 대화와 연결의 샛길에서 눈을 땔 수 없었다. 유리알 유희는 구체적인 책이라는 경계만이 아니라 셋이 함께 만드는 시간과 대화의 공간의 불확실한 경계까지 포함하는 것이었다. 승택은 그것이 유희의 본질이라 생각했다. 그래서 책과 샛길의 대화는 함께 병행 되어야만 했다. 배 이상의 시간이 걸리지만, 미묘한 긴장감은 동시에 승택의 마음에 편안함을 가져왔다. 여러 감정이 중첩된 유희의 시간이었다.


칠일 째 밤이었다. "메모로만 우선 잠깐 남겨놓습니다." 승범이 늦은 밤 메시지를 남겼다.  "740/1318 즈음의 구간에 <역사에 대해 공부하는 것>의 즉 삶의 일부로 맞이하는 것에 대한 생각해 볼만한 표현이 나옵니다. 이 부분은 실은 카스탈리엔이 놓치고 있는 2가지 중 하나인 것입니다. 또 다른 하나는 정치적 태도인 것인데, 재미있게도 크네히트는 자신이 정치적이지 않으려고 하면서도 가장 정치적으로 성공하는 이상적 인물이기도 합니다. 카스탈리엔은 보통 헤르만 헤세가 그린 유토피아로 설명되곤 하지만, 정작 그 안에 역사적 인식과 정치적 태도는 결여되어 있습니다. 현재까지 제가 이해한 범위에서는 그렇습니다. 크네히트도 역사적으로 이해하려다가 그 질서가 없고 창백한 모습의 약점을 발견합니다. ... 그리고 카스탈리엔은 수도원이라지만, 성령(?) 신앙(?)적 기반이 없는 곳이기도 하고요...". 많은 것이 담긴 메시지 였다.


팔일 째의 아침에 메시지를 본 승준이 답했다. 

"이 부분도 균형을 잡는 것과 관련이 있다고 보는데, 

유리알 유희가 갈수록 기교 일변도로 에스컬레이터를 탈 가능성을 경계하고 완화하기 위한 장치로 ‘명상’을 두었죠.  (정-반)

수도원 같은 카스텔리엔이 생길 수 있던 것도 지식이 권력에 야합하는 잡문의 시대, 전쟁의 시대의 반대급부로 각성한 지성들의 실천이 있었기 때문이고, (정-반)

마찬가지로 작은 유토피아 같이 세상과 선을 그은 카스텔리엔의 한계는 무어냐… (정-반)

즉 이런 균형을 잡으며 다음을 모색하는 패턴이 있는 것 같습니다. 

어떤 독자에겐 이러한 균형 지향이 두루뭉술한 접근으로 보일 수도 있을 듯 합니다만, 저는 좋았습니다."


"저도 그런 전체적 흐름이 좋았습니다. 저도 오늘 아침에야 1권 반절에 도달했습니다. 전에 언급주신 우생학 이야기 부분을 오늘 보았습니다. 페이지 수를 따라가는 긴장감과 조바심, 책만 읽고 따라가기에도 분량이 있습니다. 두분의 대화를 함께 따라가느라 좀 더디긴 하지만, 이 경험 전체의 핵심이 병행이고 대화의 재미가 깊어 놓치고 싶지 않은 부분도 있습니다." 승범과 승준이 대화를 나누는 그 부분을 그 아침에 마침 따라가던 승택이 말했다.


"사실 균형 지향만은 아닌데 스포일러라 말을 아꼈습니다." 승준이 다시 말했고, 승택은 "같은 맥락인지 아직은 확실히 모르겠지만, 중간 후반 기독교적인 배움을 언급하는 부분에서 그 균형에 무게차들이 있음이 보여지는 느낌이었습니다. 그리고 제가 느낀 균형의 일부는 의도가 있는 균형, 균형을 보이려는 의도와 그 안의 의도의 무게 차 같은…승택의 말에 승준이 물었다. "무게차가 있으면 기울어져서 균형을 못잡지 않나요? 어떤 부분이죠?" 승택은 "무게차가 있음에도 균형의 형식을 취하고 있다고 할까요?"라고 답했다. 

여기서 승준은 끝날 것 같은 대화에 수학 기호들로 물살을 일으켰다.


"문득 수학에서 등호가 시소 같단 이야기를 

지지난 주 클로드와 대화 나누며 했던 생각이 나네요. 

= 양변으로 균형을 잡아야하죠. 

x + 3 = 5

x + 3 - 3 = 5 - 3

x = 2

균형을 잡기 위해 양변에 똑같은 일을 해줘야 하죠."

...

"무엇과 무엇 사이에 차이가 있다고 느끼셨는지가 궁금합니다. 

본문 중에서인가요? 아니면 우리 대화 중에서였나요?"

...

"등호 = 가 또 평행선에서 왔죠."


승택이 대답할 사이도 없이 승준의 질문을 이어갔다. 그리고 그곳에는 마치 시간과 공간의 방 같은 어떤 구조의 시공간이 세워졌다. 승택은 머릿속에 물결이 일었다. "아! 이 공식을 보니 이런 느낌이었던 것 같습니다. 양변이라는 표현이 맞나요? 양변이 같아 =의 균형이 잡혀 있습니다. 그래서 a+b=c. 여기서저는 a+b가 c와 같다는 것을 결론적으로 말하는 것 같지만, 제 의도의 무게는 제가 왜 c를 말하는데 a와 b를 선택했는가 하는 것입니다. 중반부 수도회와 정치적, 역사적 이야기 전반적으로 그런 느낌이었습니다. 들었다 놨다 하는… 정확한 감상은 복기가 필요할듯 하지만 말입니다."


승택의 설명을 듣던 승준이 다시 물었다. "a와 b를 선택했는가 하는 것이다! 부분의 표현이 잘 이해가 안되는데요. 어떤 의미일까요?" 승택은 승준의 계속되는 질문에 숨을 고르고 대답을 하기로 했다. "아 …. 예를 들면…1+4=5 라고 해보겠습니다. 결과적으로 보여 지는 것은 '5와 같다'인데, 제가 5에 도달하기 위한 선택. 5와 같다고 하는 것으로 1+4를 선택하거나 2+3, 혹은 4+1로 표현 하는 것이 제 의도의 핵심/정수라는 겁니다." 생각을 정리해 입력한 승택은 승준의 다음 말을 기다렸다.


"그쵸. 5를 만들 수 있는 자연수 조합은 무한하니까요." 승준이 말을 마치기 무섭게 승택이 기다렸다는 듯 답했다. "그러니까 = 이 =이 아닌것이죠.". 승준은 설명했다. "물론 등호의 핵심은 왼쪽에 뭔가를 하면 오른쪽에도 똑 같은 일을 해줘야 하고, 오른쪽에 뭔가를 하면 왼쪽에도 똑같은 뭔가를 해줘야 한다는 것이라 봅니다." 승준은 계속 말을 이어갔고 승택의 호흡이 빨라졌다. "결과가 똑 같아도 과정은 같지 않다는 생각 입니다. 같게 하는 것이 목적이라 하더라도 말입니다"


승준이 다시 설명했다. "이 설명을 안하고 이항으로 풀이하면 오해가 생길 수 있습니다. 등호를 건너가면 부호가 반대가 된다거나 하는 과정이라고 볼 수 있을까요. 일단 이 논리를 쓰면 모든 고정된 숫자는 무한한 상태가 압축되어 있는 것입니다. 이렇게 무한히 쪼개지죠."  승준이 이어가며 수학의 기호로 쓰여진 글을 건냈다.

2 + 3 = 5

(-1 + 3) + (6 / 2) = (2.5 * 2)

(-1 + 3) + (6 / 2) = (2.5 * 2)

((10 - 11) + (1.5 * 2)) + ((3 + 3) / (7 - 5)) = ((5 / 2) * (3 - 1))


승준의 자세한 설명은 질문이 되어 승택에게 전해진듯, 승택은 자신의 생각을 이어간다. "과정. 어쩌면 영화의 subtext 같은 말해지지 않은 의미- 진짜 의미인것 같습니다. 그러니 결국은 = 양쪽의 개별적 선택이 중요하다. 뭔가 제 나름은 정리가 되어 가는 듯 한데... 세상의 균형을 맞추는 방법은 무한하다 어떤 것을 찾을 것인가? 수학을 언어를 계속 던져주시니 재미있습니다. 이것이 완전 자유로울 수도 있지만 만약 분수라면 공통 분모라든가 하는 조건들이 따르게 될 것이고, 그럼 더욱 흥미로운 맥락이 만들어 질것 같습니다." 승택은 무엇인가 승준과 함께 있는 시간과 정신의 방에 자신의 무엇인가를 만들고 있다는 생각이 들었다.


"저는 선택 보다는 같은 행위를 한다 쪽이 오해를 덜 하는 쪽이라고 보지만" 승준의 말에 승택이 바로 답했다. "저는 그것이 같은 행위가 아니라고 보는 것입니다. 결과는 같다 하더라도 행위는 다르다. 같은 결과를 지향 하더라도 과정은 완전히 다를수 있다. 다르다." 무엇인가 매듭을 지으려는 듯한 승택의 모습이었다. 


"말씀해 주신 내용이 등가의 에너지 준위에 있는 많은 다른 것이라는 개념인 '축퇴' 관점하고 닿아있어서 잠깐 재밌는 샛길로 가볼 수 있었습니다." 다시 전해진 승준의 메시지에서 승택은 왠지 차분이 웃고 있는 승준의 모습이 보인다 생각했다. 유희는 그렇게 새로운 샛길을 찾아 가고 있었다.


승택, 승준, 승범의 유리알 유희는 이제 1권의 중간에 다달았을 뿐이었다. 삼승은 유리알 유희의 끝없이 갈라지는 샛길이 그들을 어디까지 그들을 이끌어 가는지 아직 알지 못했다. 그들은 유희를 계속 할 뿐이었다. 


- 유리알 유희와 끝없이 갈라지는 샛길에 관한 삼승의 기록 1부



[1] 상형어(象形語): 민음사 판본의 유리알 유희 서문 <유리알 유희의 역사를 일반인에게 알기 쉽게 설명하기 위하여>부분에서 "사람들은 새로운 정신적 체험을 포착하거나 교환할 수 있는 새로운 알파벳, 새로운 상형어(象形語)를 꿈꾸었다."라는 문장에서 사용된 단어. 
영문 번역본에서는 "a new language of symbols"이라고 표현되었고, 독일어 원문에는 Zeichensprache(기호법, 수화) 라는 단어로 표현되어있다.
작가의 이전글 그 도시에서 만난 무라카미 하루키
브런치는 최신 브라우저에 최적화 되어있습니다. IE chrome safari