- DRAM의 Capacitor는 high-k로 구성되어 있으며 high-k를 쓰는 이유는 dieletric으로써 저장용량을 극대화시켜 결국 Capacitance 값을 높이기 위함이다.
- NAND는 물리적 한계를 극복하고 집적도를 높이기 위해 2D에서 3D로 구조 자체를 변화시켰으며 3D층이 높아질수록 Aspect ratio 맞물려 다양한 난제들이 존재한다.
3. Gate 구조 변화
- MOSFET의 Planar Gate 구조는 미세화(Scaling)로 인해 90년대에 이미 사라졌으며 현재는 Buried gate, FinFET 등 device에 따라 각기 다르게 사용 중이다. 또한 Gate 구조의 변화뿐만 아니라 Source/Drain 물질, dopant 및 dielectric의 변화 등 다양한 방법으로 디바이스에 적용 중이다.
- CMOS device에서 Gate 구조 변화는 크게 Strained channel-HKMG-FinFET 순으로 변화하였다.
Intel사 CMOS transistor 변화
- PMOS의 경우 majority carrier인 hole은 electron보다 큰 effective mass로 인해 mobility가 NMOS대비 약 1/3 수준밖에 되지 않아 이를 개선하고자 Source/Drain을 SiGe으로 epitaxial로 시킨다.
- Si 보다 큰 Ge은 epitaxial로 성장할 때 Source/Drain에 Tensile stress 유발하고 이는 channel 영역에 compressive stress를 가해주어 결과적으로 hole mobility를개선시킨다.
- high-K를 사용하면 dielectric constant가 높아 Gate oxide 두께를 증가시켜도 원활한 Gate on/off 가능하며 이는 leakage current를 줄여줄 수 있다.
- FinFET은 미세화로 인해 물리적으로 줄어든 Channel 길이를 늘려 Short channel effect 및 hot carrier 형성을 줄여서 디바이스 성능을 개선시킨다.
FinFET 구조는 Planar FET 대비 선폭이 줄어도 Channel 길이는 오히려 늘어난다.
글을 읽으며 낯설기보다 익숙했고 이런 생각도 할 수 있다.
이미 내가 알고 있는 내용인데?
하지만 이를 단순하고 막연하게 아는 것이 아니라 '왜'를 정확하게 아는 것이 중요하다.
모든 변화에는 각기 다른 이유가 있다. 그리고 그 이유는 실패와 성공을 끊임없이 반복하며 성장한다.