brunch

A. 수와 연산 - 수의 체계 - 다섯 자리 이상의 수

핵심 개념 '수의 체계'에 들어가며

by Pㄹ기


‘수와 연산’ 영역 중 ‘수의 체계’ 핵심 개념은 우리가 평소에 사용하는 ‘수’가 어떤 의미이고 왜 만들어졌는지에 대해 생각해보는 내용들이 담겨 있습니다. 수는 왜 만들어졌을까요? 우리가 일상생활에서 너무나도 자연스럽게 사용하고 있기 때문에 이런 질문을 받는다면 어떻게 대답해야할지 망설여지는 사람이 많겠지요. 그럼 다른 방법으로 물어보도록 하겠습니다. 여러분의 필통에는 연필이 있나요? 있다면 얼마나 있나요? ‘얼마나’ 라는 말이 나오면 이제 여러분은 ‘1개 있어요.’, ‘저는 3개요.’ 등의 방법으로 대답을 하겠지요. ‘조금 있어요.’나 ‘많이 있어요.’ 처럼 대답한다면 어떻게 될까요? 정확히 어느 정도의 연필을 가지고 있는지 서로 의사소통이 잘 안되겠지요? 이렇게 사물의 개수와 양을 나타내기 위해 만들어진 것이 수라고 할 수 있습니다.


지금까지(여기서 말하는 '지금까지'는 4학년 학생 기준으로의 시간입니다. 즉 1-3학년까지의 학습 내용에 대해서 말하는 것이지요.) 우리가 수학 시간에 공부한 수를 세는 방법으로는 자연수, 분수, 소수 등이 있습니다. 그 중에서도 우리에게 가장 친숙하고 평소에 많이 쓰는 1,2,3과 같은 수를 자연수라고 하는데요, 아주 어렸을때부터 손가락을 접어가며 10까지를 세는 방법을 배웠고, 이를 바탕으로 조금씩 더 큰 수를 세는 법으로 확장시켜 나갔습니다. 2학년 2학기에는 이제 네 자리 수를 세는 방법까지 공부를 했는데요, 그렇다면 네 자리 수보다 더 큰 자연수는 어떻게 표현하고 읽어야 할까요? 아마 여러분도 자연스럽게 이미 쓰고 있을 겁니다. 우리나라에서 살고 있다면 특히 더 그럴 텐데요, 물건을 살 때가 그럴 때이지요. 2학년 때 배운 네 자리 수인 1000원권, 5000원권 지폐보다 더 큰 돈인 10000원권, 50000원권 지폐가 있고 물건을 살 때 사용할 수가 있지요.


평소에 일상적으로 많이들 사용하다 보니 다들 네 자리 수보다 더 큰 자리의 자연수가 있다는 것을 잘 알고 있을 텐데요, 그래서 이번 단원이 시시하다고 생각하는 학생이 있을 수도 있겠지요. 하지만 단순히 0을 하나 더 붙이는게 뭐가 그렇게 중요하다고 한 단원 내도록 배우는 걸까요? 조금 더 생각해보면 그렇게 단순한 내용으로 끝나지 않을 것 같다는 느낌이 조금 들지요? 이번 단원에서는 이러한 큰 수들을 표현할 때 어떤 규칙이 있는지에 집중하면서 여러 상황에 적용할 수 있는 생각을 키우는 데에 집중하려고 합니다. 단순히 10000과 같은 숫자 하나 하나보다는 왜 그렇게 쓰는지, 그것보다 더 큰 수는 어떻게 표현할 지, 얼마나 더 큰 수가 되는지 등에 대해서 생각해보았으면 좋겠습니다.


이를 위해 살펴볼 내용은 차례대로 다음과 같습니다. 먼저, 2학년 2학기 1단원(2-2-1) '네 자리 수' 를 다시 돌아보며 여기서 말하는 '자리'가 무엇을 의미하는지에 대해 조금 더 깊이 생각해봅시다. 그 다음엔 이러한 자리에 대한 생각을 확장시켜서 4학년 1학기 1단원(4-4-1) '큰 수' 에 적용시켜 봅니다. 단원 이름에서 알 수 있다시피 그저 네 자리 수의 다음인 다섯 자리 수에 대해서만 다루는 것이 아니라, 더 큰 수들을 나타내는 규칙에 대해 생각해 볼 수 있게 될 것입니다. 그 다음에는 5학년 1학기 2단원(5-1-2) '약수와 배수'를 살펴보며, 수 하나에 대해서만이 아니라 여러 수들 사이의 관계에 대해서까지 나아가 볼 예정입니다. 아래에 있는 각각의 단원에서 배우는 세부 내용을 읽어보며, 대략적으로 어떤 것들에 대해 알아볼 것인지를 스스로 미리 생각해 보는 것도 좋은 방법이 될 겁니다.




2-2-1. 네 자리 수

네 자리 수의 자릿값과 위치적 기수법 알아보기

네 자리 수 읽고 쓰기

네 자리 수의 계열을 알고 크기 비교하기


4-1-1. 큰 수

10000 알아보기

다섯 자리 수 알아보기

십만, 백만, 천만 알아보기

억부터 천조 단위까지의 수 알아보기

큰 수의 뛰어 세기

큰 수의 크기 비교하기


5-1-2. 약수와 배수

약수와 배수의 의미를 알고 구하기

약수와 배수의 관계 이해하기

공약수, 최대공약수, 공배수, 최소공배수의 의미 알고 구하기




그럼 이번 단원의 기초가 되는 2학년 때 배운 네 자리 수에 대해 돌아보면서 다음 글부터 수의 체계에 대한 이야기를 시작해보도록 하겠습니다.

keyword
이전 02화시작에 앞서 - 초등 수학 교육과정 간단히 살펴보기